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Figure 1. AutoScape generates long-horizon and 3D-consistent driving scenes from a single input image, producing high-quality videos over
a temporal span of 20 seconds. Click the images in the right column within Adobe Reader to play three example videos.

Abstract

This paper proposes AutoScape, a long-horizon driving
scene generation framework. At its core is a novel RGB-D
diffusion model that iteratively generates sparse, geomet-
rically consistent keyframes, serving as reliable anchors
for the scene’s appearance and geometry. To maintain
long-range geometric consistency, the model 1) jointly han-
dles image and depth in a shared latent space, 2) explicitly
conditions on the existing scene geometry (i.e., rendered
point clouds) from previously generated keyframes, and 3)
steers the sampling process with a warp-consistent guid-
ance. Given high-quality RGB-D keyframes, a video diffu-
sion model then interpolates between them to produce dense
and coherent video frames. AutoScape generates realistic
and geometrically consistent driving videos of over 20 sec-
onds, improving the long-horizon FID and FVD scores over
the prior state-of-the-art by 48.6% and 43.0%, respectively.
Project page: https://auto-scape.github.io.

1. Introduction
Recent advances in high-quality video generation are rapidly
transforming various applications, ranging from robotics to
mixed reality, where the synthesis of realistic visual data is

*Equal Contribution. † Project Lead.

crucial. A particular example is autonomous driving, where
the photorealistic generation of driving videos plays a crucial
role in simulation and verification. But despite promising
prospects, generating 3D driving scenes that remain coherent
and consistent over long horizons remains a fundamental
challenge. Current generative methods, while achieving im-
pressive photorealism [15, 17, 23, 81, 82, 89], often struggle
with maintaining physical realism [17] and suffer from qual-
ity degradation during auto-regressive generation [12, 15],
making spatiotemporal coherence over long horizons a criti-
cal unsolved challenge.

We introduce AutoScape, a novel framework that ad-
dresses the challenges of long-horizon 3D-consistent driving
scene generation by leveraging explicit geometry awareness.
Given the observation that degrading geometric consistency
is the key bottleneck of long-horizon scene or video genera-
tion, we decompose the problem hierarchically into sparse
RGB-D keyframe generation and dense video interpolation.
The core idea is to train a powerful RGB-D diffusion model
to generate highly consistent keyframes, which serve as reli-
able anchors for the scene’s global appearance and geometry,
robustly handling a large span. Given the reliable anchors, a
video diffusion model then interpolates between keyframes,
refining rendered point clouds into a coherent video.

Our RGB-D diffusion model generates high-quality
keyframes with three key designs: 1) joint RGB-D mod-
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eling, which operates on the joint distribution of color and
depth for more coherent appearance and geometry, and con-
ducts pre-training on large-scale paired data from diverse
sources beyond driving to obtain general RGB-D priors; 2)
explicit geometry conditioning, where each generated RGB-
D keyframe is directly conditioned on the existing scene’s
appearance and geometry, in the format of rendered point
clouds; 3) warp consistent guidance, a classifier guidance
style approach that steers the diffusion model’s sampling
process toward better geometric alignment with previous
keyframes, mitigating the accumulation of errors throughout
long-term generation.

Compared to those methods that handle spatial and tem-
poral consistency using only the temporal modules of a
video diffusion model [17, 19], our hierarchical approach
offers greater robustness in terms of long-horizon genera-
tion, since the RGB-D diffusion model first produces sparse
yet highly consistent keyframes as global anchors rather
than directly generating dense frames. Compared to existing
works that also employ explicit 3D modeling and produce
keyframes [82], our method demonstrates superior keyframe
quality by the joint RGB-D modeling, geometry condition-
ing, and warp-consistent guidance.

As shown in Figure 1, AutoScape generates long-horizon,
3D-consistent, and high-quality scenes with a video duration
of 20 seconds containing 250 frames. Quantitatively, it
achieves significant improvements over the previous state-of-
the-art method, with reductions of 48.6% and 43.0% in FID
and FVD scores, respectively, in terms of long-horizon video
generation. To summarize, our contributions are threefold:
• AutoScape, a novel framework that jointly generates the

appearance and geometry of long-range driving scenes
using a hierarchical approach of keyframe generation and
interpolation.

• A new RGB-D diffusion model featuring geometry-aware
conditioning and guidance to enforce long-range 3D
consistency, ensuring both geometric stability and high-
fidelity visual quality.

• State-of-the-art quantitative and qualitative results in long-
horizon driving scene generation as demonstrated by com-
prehensive experiments.

2. Related Works
Diffusion Models. Diffusion-based generative models [22,
57, 59] have fueled a surge in generative AI. While the
theoretical advancements keep improving the mathematical
formulation, sampling speed, and generation quality [27, 36,
39, 58, 60], Variants of diffusion models have extended the
early success in image generation [13, 48, 51] to a broad
spectrum, including video [3, 4, 72], audio [31, 38], 3D [11,
30, 33, 34, 43, 47, 65, 85], motion synthesis [26, 88], visual
editing [5, 9, 45, 69, 73], and more. We employ diffusion
models for RGB-D keyframe generation and interpolation

toward long-horizon driving scene generation.
3D Scene Generation. Diffusion models have been widely
applied in scene generation. One prominent framework is it-
erative inpainting, where scenes are progressively expanded
from an initial image, like SceneScape [15], Text2Room [23],
and WonderJourney [82]. WonderWorld [81] advances this
paradigm by enhancing 3D consistency and supporting in-
teractive user control. Another widely adopted paradigm
involves generating 360-degree panoramas that can be con-
verted into 3D models [14, 55, 64, 90]. Additional methods
focus on producing high-level scene layouts [41, 56, 74] or
generating LiDAR point clouds to represent 3D scene struc-
tures [49, 87]. In autonomous driving, methods like Mag-
icDrive3D [17] and DriveDreamer4D [89] generate driving
videos using diffusion models, which are subsequently trans-
formed into 3D scenes for efficient simulation. However,
the temporal span of video diffusion models constrains these
approaches in terms of the scene scale.
Street View Generation. Although numerous studies in-
vestigated street-view generation with reconstruction sys-
tems [10, 62, 66, 75, 76, 79], the recent advances in dif-
fusion models have made generative simulation popular.
Diffusion-based approaches have been applied to sensor
simulation or data augmentation, leveraging layout condi-
tioning such as HD maps or object bounding boxes to pro-
duce realistic urban scenes [16, 24, 37, 53, 63, 68, 70, 77].
MagicDrive [16] and MVPbev [37] employ cross-view at-
tention mechanisms to synthesize multi-camera images.
StreetScapes [12] proposes an autoregressive video diffu-
sion model to generate long-range street-view videos, condi-
tioned on 2.5D maps. Vista [19] constructs a driving model
capable of producing extended, high-fidelity driving videos
with action controls. DriveArena [78] integrates components
from previous methods to establish a generative closed-loop
simulator. Our work focuses on scene and video generation
over substantially longer temporal horizons.
Concurrent Works. Several concurrent efforts explore
long-horizon street-view synthesis [18, 42]. InfiniCube [42]
constructs an explicit sparse-voxel 3D world to guide a
video diffusion model, generating unbounded driving scenes.
MagicDrive-V2 [18] introduces an efficient video-diffusion
architecture that scales to longer sequences. In contrast, our
approach develops a novel RGB-D diffusion model that it-
eratively produces sparse, geometry-consistent keyframes,
which in turn facilitate long-horizon video generation.

3. Preliminary
Diffusion models lay the foundation of our scene generation
framework. Diffusion-based generative models [22, 57, 59]
have recently emerged as a dominant family of genera-
tive models, capable of capturing complex data distribu-
tions through iterative denoising processes. The core mech-
anism involves a pre-defined forward diffusion process
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Figure 2. Pipeline of the AutoScape. The vehicle trajectory defines the location of keyframes and interpolation frames, spanning a
long-horizon 3D space. The Keyframes Generation stage iteratively generates geometrically consistent keyframes with an RGB-D diffusion
model as global scene anchors. The Interpolation stage then produces dense frames with a video diffusion model. The keyframe viewpoints
are indicated by and the interpolation viewpoints are marked by , best viewed in color.

q(xt | xt−1) that incrementally adds Gaussian noise to the
data over T timesteps, transforming an original data sample
x0 into a noisy xT , defined by:

q(xt | xt−1) = N
(
xt;

√
1− βt xt−1, βtI

)
(1)

where βt denotes the variance schedule controlling the noise
level at each timestep, and I is the identity matrix. The
reverse process aims to recover the original data by learning
a parameterized denoising model pθ(xt−1 | xt):

pθ(xt−1 | xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (2)

µθ and Σθ representing the mean and covariance functions
modeled by neural networks with parameters θ. By itera-
tively applying this process starting from a Gaussian noise
xT , the model generates new data samples that resemble the
training data distribution.

Latent Diffusion Models (LDMs) [51] operate in the com-
pressed latent space of a pre-trained autoencoder rather than
the raw high-dimensional data space, which enhances com-
putational efficiency without compromising generative per-
formance. Our method is based on the LDM formulation.

4. AutoScape
4.1. Framework Overview
This paper focuses on generating long-horizon, high-quality,
and 3D-consistent driving scenes. Although recent advance-
ments in general video generation techniques [3, 72] have
made promising progress in producing driving videos [16,

19], ensuring 3D consistency across hundreds of frames (e.g.,
over 20 seconds) remains hard. Long-range temporal and
geometric consistency are the central challenges.

AutoScape is a two-stage scene generation framework
aiming for robust long-term coherency and stability (Fig-
ure 2). In the keyframe generation stage, a RGB-D diffusion
model jointly generates keyframes and the corresponding
point clouds to anchor the scene’s global appearance and
geometry. In the interpolation stage, dense frames are first
rendered from the consecutive RGB-D keyframes and then
refined into coherent images using a video diffusion model.
The explicit geometry modeling makes the first stage pro-
duce consistent yet sparse keyframes, which then serve as
reliable conditions for the interpolation stage.
Keyframe Generation Process. The keyframe generation
process, illustrated in Figure 2 (left), generates keyframes
iteratively along specified sparse viewpoints. Each itera-
tion comprises three steps: back-projection, rendering, and
diffusion model generation. In the first iteration, we begin
with a real input image or a generated RGB-D image, back-
projecting the image into 3D space as point clouds P with
camera parameters. The back projection is defined as:

P = B(Xrgb,Xdepth, C), (3)

where P = {Pi}Ni=1 denotes the set of 3D point clouds
obtained from the existing N keyframes. Xrgb = {xrgb,i}Ni=1

and Xdepth = {xdepth,i}Ni=1 represent the collections of RGB
images and depth images of the keyframes, respectively.
C = {ci}Ni=1 is the set of camera parameters (including
intrinsics and extrinsics) corresponding to each keyframe.
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B(·) is the back-projection function that reconstructs the 3D
point clouds Pi from the RGB and depth images using the
camera parameters ci for each keyframe i. Subsequently,
the rendered keyframe points are produced by projecting the
point clouds onto the image plane of the next keyframe:

h,m = R(P, c), (4)

where h is the rendered keyframe points, essentially a coarse
image with noise and holes. m is the corresponding visibility
mask indicating the presence of projected points. R(·) is the
rendering function that projects the 3D point clouds onto the
image plane defined by the target camera parameters c.

The rendered keyframe points h and the visibility mask
serve as the conditioning input for the RGB-D diffusion
model, along with the map, object boxes, and prompt con-
ditions. The generated RGB-D keyframe K would then
contribute to the next iteration by adding its back-projection
into the existing point clouds. The auto-regressive process
runs in reverse along the trajectory, starting from the end and
iteratively moving to the next nearest keyframe viewpoint
until it reaches the start. § 4.2 presents the details of this
RGB-D diffusion model.

Recent works, such as WonderJourney [81, 82], have also
explored the use of keyframes. However, these methods
primarily rely on pretrained image inpainting models for
keyframe generation. We propose a novel conditional RGB-
D diffusion model, which offers key advantages in terms
of generalizability and geometry awareness. Specifically,
we introduce a two-stage training framework that enables
the diffusion model to be pre-trained on large-scale RGB-D
data (millions of images), thereby improving its generaliz-
ability. Moreover, previous methods predict depth solely
from the generated RGB frame, which restricts the ability of
different frames to access details from the previously gen-
erated geometry, often resulting in inconsistent depth maps.
To overcome this limitation, we make the diffusion model
conditioned on both appearance and geometry, thus gener-
ating more coherent keyframes. This design significantly
enhances the model’s geometry awareness and ensures bet-
ter consistency with existing scene geometry.
Warp Consistent Guidance. While the explicit geometry
conditioning improves the long-term consistency, we still
observe that the generated content of the RGB-D diffusion
model occasionally misaligns with the rendered keyframe
points from previous keyframes. To further improve the con-
sistency at test time, we propose a warp consistent guidance
mechanism, steering the sampling process toward better 3D
alignment during inference. More details are in § 4.3
Interpolation. The interpolation process generates dense
frames by interpolating between two consecutive keyframes.
The interpolation process is conditioned on the rendered
3D point clouds derived from the keyframes and utilizes an
off-the-shelf video diffusion model from ViewCrafter [83].
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Figure 3. (Left) Input processing of our RGB-D diffusion model.
(Right) The warp-consistent guidance for steering the sampling
process toward better geometric consistency.

Existing approaches [81, 82] rely on pre-trained image gener-
ation models to interpolate sparse keyframes, neglecting the
global consistency of the interpolated frames. Given high-
quality keyframes generation, a point-cloud-conditioned
video diffusion model can produce highly coherent inter-
polation along the rendering trajectory.

In the rest of the section, § 4.2, § 4.3, and § 4.4 elaborate
on the RGB-D diffusion model, the warp consistent guidance
mechanism, and the interpolation video diffusion models.

4.2. RGB-D Diffusion for Keyframe Generation

The core of AutoScape is a diffusion model that auto-
regressively generates RGB-D keyframes. It incorporates
robust geometric priors by explicitly modeling the depth
and training on a large dataset with curated depth infor-
mation. The model progressively builds upon the existing
scene’s geometry by conditioning on the rendered keyframe
points. This design enhances both the appearance and ge-
ometric coherency between the new and previously gener-
ated keyframes, thereby maintaining quality and consistency
across a long generation horizon.
Backbone. Our RGB-D diffusion model is based on the La-
tent Diffusion Model (LDM) [51]. It comprises a Variational
Autoencoder (VAE) [28] that compresses inputs into a latent
space, where the denoising U-Net [52] is trained to revert
the forward process. To extend the model for RGB-D con-
ditioning and generation, we first extend the VAE to jointly
model image and depth, encoding and decoding the RGB-D
data to or from the latent space, respectively. Full details of
the RGB-D VAE are in § B of the Appendix.
Conditioning. To integrate the Rendered Keyframe Points h
as a condition, as shown in Figure 3 (left), it is first encoded
by the RGB-D VAE, serving as an additional conditioning
input to the model. The visibility mask m is down-sampled
to match the spatial resolution of the latent space. The noisy
latent, the mask, and the RGB-D latent code of h are concate-
nated along the channel dimension and fed into the U-Net.
To accommodate the additional channels, the U-Net archi-
tecture is extended by adding five extra input channels. The
initial convolution layers for processing these new channels
are zero-initialized. Following Stable Diffusion [51], text
prompts are injected through the cross-attention module. We
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also incorporate HD maps and object boxes through Control-
Net [86]; details are discussed in § A.
Training Pipeline. The training of the RGB-D diffusion
model comprises two stages: RGB-D pre-training and
rendering-conditioned fine-tuning. The RGB-D pre-training
stage performs the RGB-D inpainting task on large-scale,
curated image data. The depth used for training is pseudo-
labeled with Metric3D [25], an off-the-shelf monocular met-
ric depth estimator. Note that the additional conditions are
simulated by masking the data with synthetic masks, rather
than being derived from a keyframe, which is a key for
large-scale training on diverse data sources. In the rendering-
conditioned fine-tuning stage, the rendered keyframe points
and visibility mask are derived from the last keyframe, while
the map and bounding box conditions are also incorporated.
The model is fine-tuned on driving-specific datasets. More
training details are provided in § 5.1.

4.3. Warp Consistent Guidance

Although diffusion models conditioned on rendered
keyframe points (i.e., coarse image) share similarities with
traditional image inpainting, we observe that the generated
content sometimes exhibits pronounced appearance and ge-
ometry inconsistencies in the overlapping regions. One po-
tential cause is the noisy training data, where the depths of
two consecutive keyframes do not align perfectly with each
other. The inconsistency adversely affects 3D consistency,
leading to increasingly noticeable shifts in appearance and
scene geometry throughout the iterative generation process.

To mitigate this, we propose Warp Consistent Guidance
(WCG) to steer the sampling process of the diffusion model
toward better geometric consistency. The idea is to introduce
a projection consistency loss to quantify the discrepancy
between rendered keyframe points and RGB-D generation,
as illustrated in Figure 3 (right). The loss then adjusts the
sampling process through classifier guidance. Concretely,
the loss is defined as the masked Mean Squared Error (MSE)
between the predicted RGB-D frame x and the rendered
keyframe points input h:

Ld(x,h;m) =

∑
i mi (xi − hi)

2∑
i mi

. (5)

where i is the pixel index, and we slightly abuse the subscript
of x here. mi ∈ {0, 1} is the i-th pixel of the overlap
mask m. mi = 1 means the pixel is visible in both the
target keyframes and the previously generated keyframes,
and mi = 0 otherwise. We mask out 5% pixels with the
largest loss for better robustness against noise.

The gradient of Ld then guides the generation towards
latent regions that are more geometrically consistent with
existing keyframes. Formally, at timestep t, the sampling
process is modified by adjusting the original score estimate

Ground 
Truth

Rendered 
Keyframe 
Points ℎ! 

RGB-D 
Generation 
W/ WCG

RGB-D 
Generation
W/O WCG

Figure 4. Qualitative comparison to show the effectiveness of our
warp consistent guidance (WCG) strategy for better consistency.

sθ(xt, t) with ∇xt
Ld. The adjusted score is defined as:

s̃θ(xt, t) = sθ(xt, t) + w∇xtLd(xt,h;m), (6)

s̃θ(xt, t) is the adjusted score used at each sampling step,
and w is the scale that controls the strength of WCG. Fig-
ure 4 demonstrates that WCG significantly improves the
consistency between the rendered keyframe points and the
newly generated keyframe, which eventually enhances the
quality and stability of the long-horizon generation.

4.4. Video Diffusion Model for Interpolation
After generating the sparse RGB-D keyframes along the tra-
jectory in the 3D scene, the interpolation stage connects two
consecutive keyframes with dense frames, as illustrated in
Figure 2 (right). Compared to an image inpainting model,
employing a video diffusion model enables smoother inter-
polation due to its strong temporal priors. Furthermore, the
video diffusion model can be anchored on our high-quality
RGB-D keyframes. The rendering results provide effective
geometric cues, making it easier to produce coherent inter-
polation. The interpolation process is defined by:

{xI
t }Tt=1 = G({zt}Tt=1; {hI

t }Tt=1,K1,K2). (7)

G is the video diffusion model, and we use the off-the-shelf
point-cloud-conditioned model from ViewCrafter [83]. T is
the number of interpolation frames between two keyframes.
Each zt is sampled from N (0, I). {xI

t }Tt=1 are the out-
put frames and {hI

t }Tt=1 are the corresponding rendered
keyframe points. Unlike the rendered results h used in
keyframe generation. hI only contains the RGB information
without depth to fit the pre-trained model’s input specifica-
tion. K1 and K2 are the two consecutive RGB-D keyframes.

5. Experiment
Baselines. We compare AutoScape with Vista [19] and Won-
derJourney [82], two competitive methods for generating
long-horizon videos. Vista is the state-of-the-art in driving
video generation. WonderJourney achieves long-horizon
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Table 1. Comparison of Methods in Terms of FID and FVD at Different Time Splits. WonderJourney† indicated WonderJourney adapted for
driving scene. Overall indicates the time split of 0-20s. For both FID and FVD, lower is better, denoted by ↓. The top-performing methods
are highlighted in bold. The proposed method advances the previous State-of-the-Art method Vista [19] by reducing FID from 68.3 to 35.1
and FVD from 629.8 to 359.0, corresponding to a significant improvement margin of 48.6% and 43.0%, respectively.

Method 0–5s 5–10s 10–15s 15–20s Overall

FID↓ FVD↓ FID↓ FVD↓ FID↓ FVD↓ FID↓ FVD↓ FID↓ FVD↓
WonderJourney [82] 93.0 977.2 157.4 1651.7 172.7 1716.7 172.5 1737.8 127.5 1017.4
WonderJourney† [82] 49.8 661.8 111.7 1551.5 114.1 1730.1 99.0 1756.7 73.7 939.6
Vista [19] 37.2 436.4 72.4 967.0 124.6 1329.1 157.9 1614.5 68.3 629.8
AutoScape (Ours) 34.3 385.9 48.8 526.3 54.0 579.5 56.8 657.4 35.1 359.0

generation for general scenes. We adapt WonderJourney by
finetuning its diffusion model on driving data and perform-
ing the generation with vehicle trajectories from nuScenes
(denoted as WonderJourney†) for fair comparisons.
Datasets and Evaluation Metrics. We evaluate all meth-
ods on the nuScenes validation set (with 150 videos) using
Fréchet Inception Distance (FID) [20] and Fréchet Video
Distance (FVD) [67] while extending the evaluation to fo-
cus more on long horizon. Each model generates a long
sequence of frames from a single input image, and the gener-
ation can extend up to 20 seconds. To better understand the
performance change over time, we compute FID and FVD
scores over consecutive 5-second segments.

In the rest of this section, §5.1 introduces the primary
implementation details of AutoScape, then §5.2, §5.3 and
§5.4 present the evaluation results and analyses. We refer to
the supplementary for more details and results.

5.1. Implementation Details

RGB-D Pre-training. RGB-D pre-training scales the diffu-
sion model on large-scale RGB-D datasets to learn robust
geometry priors. While there are many existing high-quality
image datasets [7, 54], depth data is scarce. To scale up
the training, we generate depth with a monocular metric
depth predictor [25, 80]. In practice, we collect RGB im-
ages from nuScene (training split) [6], Argoverse2 (train-
ing split) [71], and SA1B [29] and prepare the depth data,
forming a dataset of 13 million diverse images. We use
the ground-truth intrinsics for the depth predictor [25] on
nuScene and Argoverse2, while predicting the intrinsics with
WildCamera [91] on SA1B. We also generate text pseudo-
labels with a Vision-Language Model [35] for pretraining.
We initialize the Diffusion Unet with the pre-trained Unet
of SD-Inpainting-V2.0 [51]. We train the model with text-
conditioned RGB-D in-painting to preserve the text con-
trollability and inpainting ability of the base model. The
inpainting masks are randomly generated to resemble the
visibility mask from projection. We use 32 A100 GPUs for
RGB-D pre-training, training for 50k iterations over 2 days.
The batch size is 1024 and the learning rate is 1e-4.

Rendering Conditioned Training. For rendering condi-
tioned training, we employ a training strategy mimicking the
iterative keyframes generation process. Specifically, each
training sample is generated via sampling a pair of frames
from the same video sequence with a gap range from 5 to 60
frames. Assigning one of them to be the condition frame and
the other as the target, we then project the condition frame
to the target frame utilizing the depth and cameras. The
projection then serves as the rendered keyframe points con-
ditioning for the target frame. The model is also conditioned
with HD maps and object boxes. The training only uses
nuScenes, and we prepare 500 samples per scene, resulting
in a dataset with 350k samples. The training is conducted on
8 A6000 GPUs over 2 days, with a batch size of 512 for 20k
iterations, using a learning rate of 1e-4.
Data Filtering. The rendered keyframe points are some-
times inconsistent with the target image due to noisy depth,
dynamic objects, and occlusions. This can impair the 3D
consistency of the iterative generation. To alleviate this,
we use the warp consistent loss Ld(x, h;m) to measure the
consistency between two frames and filter out the most in-
consistent samples. In practice, we filter out 20% of the 350k
samples and train only with the remaining 280k.
Video Diffusion Model Training Setting. Given the high-
quality RGB-D keyframes, the pre-trained model from
ViewCrafter [83] can directly produce promising interpo-
lation results. We therefore use the point-cloud-conditioned
model without fine-tuning. Several concurrent methods [2,
44, 50] are also potentially applicable to this stage, and we
leave systematic comparisons for future work.
Viewpoints Selection for Keyframes. Selecting an optimal
spacing for keyframes is essential. On the one hand, overly
dense keyframes result in inefficient modeling of long-range
geometric dependencies. On the other hand, if the keyframes
are too sparse, the interpolation stage could fail. We desig-
nate the first keyframe as one endpoint of the trajectory, then
traverse the trajectory to identify the subsequent keyframes.
The first viewpoint with either the distance or the view angle
difference from the previous keyframe exceeding β or γ,
respectively, is selected as the next keyframe. In practice.
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Figure 5. Qualitative comparisons. WonderJourney† represents WonderJourney adapted for driving scenes. We sample frames from different
time splits to demonstrate both short and long-term performance. AutoScape maintains 3D consistency over significant view changes and
extends toward a long horizon. Vista generates the video from the start of the trajectory to the end, while others generate in the reverse order.

We set β = 10m and γ = 20◦.

5.2. Main Results

Quantitative Comparison. Table 1 shows that AutoScape
achieves the best quantitative performance across all time
splits. For overall video quality, it improves Vista from
[68.3, 629.8] to [35.1, 359.0] in terms of [FID, FVD], respec-
tively. This margin is even larger in terms of the long-horizon
generation in time split of 15-20s, from [157.9, 1614.5] to
[56.8, 657.4] in terms of [FID, FVD], corresponding to a
significant improvement of 64% and 59.3%. To evaluate gen-
eralizability, we further assess our method on the Argoverse2
dataset [71] without fine-tuning. While Vista achieved [FID,
FVD] scores of [80.4, 614.2], AutoScape significantly im-
proves the scores to [49.2, 317.9]. demonstrating the robust
generalizability achieved through the RGB-D pre-training.
Qualitative Comparison. As visualized in Figure 5, while
WonderJourney produces reasonable images across all time
splits, it struggles to generate photorealistic driving scenes.
After adapting it to driving data, WonderJourney† shows
better photorealism. However, both versions exhibit a grad-
ual loss of context and deviate from the input image. For
instance, in the video clip spanning 5–10s, both versions
alter the scene from night to day. Additionally, WonderJour-
ney depends heavily on carefully designed camera trajec-
tories, and the results deteriorate with real-world vehicle
trajectories. Vista, on the other hand, can generate high-
quality videos for short clips (e.g., 0–5 seconds), but the
performance rapidly drops for more extended sequences. In

Table 2. Ablation study on the design components of AutoScape.

Methods FID↓ FVD↓
AutoScape (Ours) 35.1 359.0
– RGB-D Pre-training 47.6 650.0
– Data Filtering 43.5 463.0
– Warp Consistent Guidance 38.5 380.2
– Depth Generation 39.2 511.4

contrast, AutoScape consistently produces 3D-consistent,
long-horizon, high-quality videos across all temporal splits,
effectively handling significant dynamics of real-world tra-
jectories and generalizing well to challenging conditions
User Study. To thoroughly evaluate long-sequence 3D con-
sistency, we conducted a user study in which participants
selected the video exhibiting the best 3D consistency perfor-
mance over a long sequence. From 22 valid responses, our
method was preferred in 88.39% of the cases against Vista
and both variants of WonderJourney.

5.3. Ablation Study
We investigate the effectiveness of different components of
AutoScape in Table 2 and analyze the results below.
RGB-D Pretraining. For this ablation, instead of employing
the two-stage training pipeline, we initialize the model with
the Stable Diffusion model and finetune it with only the
Rendering Conditioned Training stage. Removing the pre-
training stage significantly impacts performance, increasing
the FID and FVD from 35.1 and 359.0 to 47.6 and 650.0,
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Interpolation with Video Diffusion Model

Figure 6. Illustration of the interpolation process. (Top) The intermediate frames between two RGB-D keyframes with the rendered
interpolation points. (Bottom) The corresponding interpolation results from the video diffusion model.
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Figure 7. Generalization to various weather conditions, rare objects, and uncommon scene types.

respectively, highlighting the effectiveness of large-scale
RGB-D pre-training.
Data Filtering. As introduced earlier, we filter out 20%
most inconsistent samples for training. Training with noisy
data results in significant performance degradation of 8.4 and
104 in FID and FVD, respectively. This indicates that the
inconsistency between the rendered keyframe points and the
generated content has a significant impact on the consistency.
Warp Consistent Guidance. Warp consistent guidance can
significantly boost the FID and FVD of the generated video
by further enhancing the 3D consistency. Removing it would
result in a performance drop from 35.1 to 38.5 for FID and
from 359.0 to 380.2 for FVD, indicating the effectiveness of
the proposed Warp Consistent Guidance.
Joint Depth Generation. We then study the necessity of
jointly generating depth with the diffusion model. For this
ablation study, we replace the RGBD Diffusion model with
the standard RGB Diffusion model. The depth is predicted
using a monocular metric depth prediction model [25] based
on the generated RGB image. As shown in Table 2. Re-
moving depth generation decreases the FID and FVD from
35.1 and 359.0 to 39.2 and 511.4, respectively. The clear
degradation of FVD indicates that the model without depth
generation lacks an understanding of geometry and leads to
worse 3D consistency.

5.4. More Results and Analyses
Interpolation Process. Figure 6 illustrates the process of
interpolation generation with the intermediate rendering con-
dition. The projection of point clouds depicts the appearance
of the global frame, ensuring the 3D consistency of gener-
ated content. And the video diffusion model complements
the missing holes and produces a high-quality video clip.
More examples can be found in the supplementary material.
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Figure 8. AutoScape’s generation controllability with texts (for
weather), HD maps, and object bounding boxes.

Generalization to Corner Case. Figure 6 illustrates how
AutoScape handles out-of-distribution (OOD) corner cases,
including rare weather conditions (e.g., rainy), uncommon
vehicle types (e.g., ambulances), and uncommon environ-
ments (e.g., rural landscapes). Figure 5 also covers the
generation of night-time scenes.
Controllability. Figure 8 demonstrates the fine-grained con-
trollability of our method through texts, object bounding
boxes, and HD maps. The flexible control enables the gener-
ation of highly customized, long-horizon scenes.

6. Conclusion
This paper introduced AutoScape, a hierarchical framework
for long-horizon, 3D-consistent driving scene generation.
The core is a novel RGB-D diffusion model that generates
geometrically-consistent keyframes using joint RGB-D mod-
eling, explicit geometry conditioning, and warp-consistent
guidance. By anchoring a video interpolation stage with
high-quality keyframes, AutoScape successfully mitigates
geometric drift, generating realistic and coherent driving
scene videos that maintain consistency for over 20 seconds.
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AutoScape: Geometry-Consistent Long-Horizon Scene Generation

Supplementary Material

In the supplementary material, we provide additional con-
tent that could not be included in the main paper due to
page and format constraints. The supplementary material is
organized as follows:
• In § A presents the remaining implementation details.
• In § B presents the architectural and training details of the

RGB-D VAE of AutoScape.
• In § C provides additional experimental results.

A. Remaining Implementation Details

This section presents the remaining implementation details
that are not covered in the main paper due to space lim-
itations. The proposed method is implemented with Py-
torch [46] and the Diffuser library.
Optimization Settings. For both RGB-D pretraining and
rendering-conditioned training, we utilize the AdamW opti-
mizer to facilitate optimization. The learning rate (lr) and
weight decay (wd) are set to 1 × 10−4 and 1 × 10−2, re-
spectively, with a learning rate warmup applied over the first
3000 iterations. Gradient clipping with a maximum norm of
1 is implemented to enhance training stability. Additionally,
both training and inference are conducted using bfloat16
(brain floating-point 16-bit) precision to ensure computa-
tional efficiency and optimization effectiveness.
HD Map and Bbox Condition. To enable more flexible con-
trollability, we augment our RGB-D diffusion model with
a ControlNet [86] branch to encode HD maps and object
bounding boxes. Figure 9 provides a visualization of these
conditioning inputs. Specifically, for the map condition, we
extract the layers (i.e., lane boundary, lane divider, and pedes-
trian crossings from the vector HD maps [8, 32, 84] and then
project them onto the image plane. To specify the location
and orientation of objects precisely, we utilize two types of
box control images: semantic box control and orientation
box control. Both box controls are derived by projecting 3D
bounding boxes onto the image plane with the camera param-
eters. For the semantic box control, different colors are used
to distinguish vehicles, pedestrians, roadblocks, etc. For the
orientation box control, the orientation of each vehicle is
indicated by assigning unique colors to each edge of the box.
Figure 8 in the main paper demonstrates the controlled gen-
eration through these protocols. Note that our conditioning
strategies for HD Maps and objects are different from those
in MagicDrive [16] or DriverDreamer [68].
Training with ControlNet. ControlNet is only incorpo-
rated during the rendering-conditioned training stage, as
the HD maps and object boxes conditions are not available
for the RGB-D pre-training stage, where we use datasets

Figure 9. The control signals with the corresponding images. From
left to right are ground-truth RGB images, projected maps, semantic
box control, and orientation box control.

beyond driving. The ControlNet is initialized using the U-
Net model from the RGB-D pretraining stage, following
those outlined in the original ControlNet [86]. During the
rendering-conditioned training stage, we fine-tune both Con-
trolNet and U-Net to facilitate convergence.
Inference Settings. For diffusion model inference, we uti-
lize DPM-Solver [40] with 50 steps. Additionally, classifier-
free guidance [21] is employed to enhance the quality of
conditioned generation, using a guidance strength of 7.5 in
accordance with the default settings of the diffuser library.

B. Details of the RGB-D VAE
Similar to LDM3D [61], we modify the VAE to support
depth encoding and decoding to accommodate depth gener-
ation, while preserving the latent code shape. Specifically,
we first normalize the depth to 0-1, with a maximum depth
of 300 meters, to align with the scale of the RGB channels.
Then, the normalized depth (1 channel) is concatenated with
RGB (3 channels) to create a 4-channel RGB-D input for
the VAE. Architecturally, we extend the first and last con-
volutions in both the encoder and decoder to accommodate
this 4-channel input and output, ensuring compatibility with
RGB-D data. As the default 8-bit choice for RGB channel
leads to significant precision loss for depth channel [61], we
employ 16-bit precision for RGB-D inputs and outputs to
retain depth details accurately. Since the latent feature shape
remains unchanged, we apply the existing U-Net architecture
directly for latent diffusion.

The RGB-D VAE is initialized with the pretrained RGB
VAE from Stable Diffusion models [51]. The added parame-
ters are initialized to zero to preserve pretrained knowledge.
The optimization target is defined as

LVAE = Eqϕ(z|x) [− log pθ(xrgb | z)]
+ λdepth · Eqϕ(z|x) [− log pθ(xdepth | z)]
+DKL (qϕ(z | x) ∥ p(z))

(8)

where xrgb represents the RGB image data. xdepth represents

1



the depth map data. x is the combination of xrgb and xdepth.
qϕ(z | xrgb,xdepth) is the encoder network with parameters
ϕ, encoding both RGB and depth inputs. pθ(xrgb | z) and
pθ(xdepth | z) are the decoder networks reconstructing RGB
images and depth maps from the latent variable z. DKL is
the Kullback-Leibler divergence between the approximate
posterior qϕ(z | x) and the prior p(z).

The first and second term, Eqϕ(z|x) [− log pθ(xrgb | z)]
and Eqϕ(z|x) [− log pθ(xdepth | z)], minimize the reconstruc-
tion errors for the RGB images and depth maps, respectively.
The third term DKL (qϕ(z | x) ∥ p(z)), regularizes the latent
space by enforcing alignment with a predefined prior distri-
bution, thereby promoting smoothness and continuity in the
latent space z.

Given that depth maps tend to contain less high-frequency
information than RGB images due to the inherently smooth
nature of geometric data, the reconstruction loss for depth is
generally smaller than for RGB. To address this imbalance,
we introduce a weighting factor, λdepth, to amplify the depth
reconstruction loss. In practice, we set λdepth = 10.

To train the RGB-D diffusion model, we implement a
two-stage training strategy, as outlined in § 5.1.

C. Additional Experimental Results
More baseline results. To further evaluate the quality of
keyframes generated by the proposed AutoScape in compar-
ison to the baselines, we apply ViewCrafter to interpolate
the keyframes produced by WonderJourney†. This results in
FID and FVD scores of 59.1 and 858.9, respectively, which
are significantly higher than those achieved by AutoScape
(35.1 and 359.0). These findings highlight the superior visual
quality of the keyframes generated by our method.
Compare with single-stage video diffusion models. To
further assess the performance of our proposed two-stage
method against the state-of-the-art one-stage approach, we
fine-tune COSMOS-Transfer [1] with the HD map from
nuScenes and perform autoregressive generation to produce
long videos. COSMOS-Transfer achieved an FID of 44.2
and an FVD of 436.1, whereas our method attained 35.1 and
359.0, respectively, demonstrating its clear superiority.
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